If it's not what You are looking for type in the equation solver your own equation and let us solve it.
84=7v^2+28
We move all terms to the left:
84-(7v^2+28)=0
We get rid of parentheses
-7v^2-28+84=0
We add all the numbers together, and all the variables
-7v^2+56=0
a = -7; b = 0; c = +56;
Δ = b2-4ac
Δ = 02-4·(-7)·56
Δ = 1568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1568}=\sqrt{784*2}=\sqrt{784}*\sqrt{2}=28\sqrt{2}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28\sqrt{2}}{2*-7}=\frac{0-28\sqrt{2}}{-14} =-\frac{28\sqrt{2}}{-14} =-\frac{2\sqrt{2}}{-1} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28\sqrt{2}}{2*-7}=\frac{0+28\sqrt{2}}{-14} =\frac{28\sqrt{2}}{-14} =\frac{2\sqrt{2}}{-1} $
| x7=1628 | | F(4)=1x+3 | | 3x+18=3x+28 | | F(3)=1x+3 | | X^2+10x-12=9x | | 6-7p=-7p+35 | | F(2)=1x+3 | | w/3+2=15 | | n=43n+6 | | 1/216=36^(3x+6) | | 1/216=36^(3x+6( | | 4-7x=x+14*10 | | m/9-12=-2 | | 12w+14w-6+5=-5w+5-6 | | F(1)=1x+3 | | g–1+ –4=–2 | | -4x-3=-(4x-9) | | h+3.8=12.1 | | 5x/3+4=5x+18 | | 7t+16=16 | | m/4+7=-11 | | -2(3b-10)+3(3b+5)=-16 | | c×1=c | | 2x+2=-6x+14 | | 6+30x=66 | | 15–7r=78 | | 12x=80+20+20 | | 1/5s=6 | | F(0)=1x+3 | | 24=13z+6 | | 8a=40=11 | | 70=7(1+3n) |